Conference on Green Building, The Economy, and Public Policy

Berkeley, California December 2, 2009

Arthur H. Rosenfeld, Commissioner California Energy Commission (916) 654–4930

ARosenfe@Energy.State.CA.US

10th Largest World Economy \$1.5 Trillion (2004-ppp)

Energy Consumption ~295,000 GWh (2006)

Peak Demand ~64,000 MW (2006)

Population-35 million; growth rate-1.5%/year, Electricity growth for last decade 1.6%/yr

Per Capita Electricity Sales (not including self-generation) (kWh/person) (2006 to 2008 are forecast data)

Per Capita Electricity Sales (not including self-generation) (kWh/person)

Impact of Appliance Efficiency Regulations

In 2009, approximately 31% (17,896 GWh) of California's energy savings are achieved through appliance efficiency standards. This saves \$2.5 billion in electrical bills annually. [2009 Integrated Energy Policy Report]

New United States Refrigerator Use v. Time and Retail Prices

Source: David Goldstein

Annual Energy Saved vs. Several Sources of Supply

In the United States

Value of Energy to be Saved (at 8.5 cents/kWh, retail price) vs. Several Sources of Supply in 2005 (at 3 cents/kWh, wholesale price)

Televisions Represent Significant Energy Use

The residential energy consumption due to televisions rapidly **increased from 3-4% in 1990s to 8-10% in 2008**. Television energy will grow up to 18% by 2023 without regulations. The projected growth does not include the residential energy use by cable boxes, DVD players, internet boxes, Blue Ray, game consoles etc.

California Energy Consumption from TVs (Forecast with and without proposed standards)

Technically Feasible Standards

^{*}Consumers can expect to save between \$50 - \$250 over the life of their TV

^{*}A 50 inch plasma can consume as little as 307 kWh/yr and as much as 903 kWh/yr

General Purpose Lighting – Proposed Regulations (cont.)

Proposed Table K-8: Standards for State-regulated General Services Incandescent Lamps -Tier I

Rated Lumens Range	Maximum rated Wattage	Minimum Rated Life Time	Proposed California
	G		Effective Date
1490-2600 Lumens	72 Watts	1,000 hours	Jan, 1, 2011
1050-1489Lumens	53 Watts	1,000 hours	Jan 1, 2012
750-1049 Lumens	43 Watts	1,000 hours	Jan 1, 2013
310-749 Lumens	29 Watts	1,000 hours	Jan 1, 2013

Proposed Table K-9: Standards for State-regulated General Services Lamps -Tier II

Lumens Range	Maximum Lamp Efficacy	Minimum Rated Life Time	Proposed California
All	45 lumens per watt	1,000 hours	Jan, 1, 2018

- Source for following two Slides:
 - Lester Lave and Maxine Savitz. Relative Costs for 95 new production homes at Premier Gardens in Sacramento.
- Report of Panel on Energy Efficiency in the United States. National Academies Press. (November 2009) WWW.NAS.EDU

- Published in Climatic Change 2009.
- Global Cooling: Increasing World-wide Urban Albedos to Offset CO2

July 28, 2008

Hashem Akbari and Surabi Menon

Lawrence Berkeley National

Laboratory, USA

H_Akbari@lbl.gov

Tel: 510-486-4287

Arthur Rosenfeld
California Energy Commission, USA
Arosenfe@energy.state.ca.us
Tel: 916-654 4930

 A First Step In Geo-Engineering Which Saves Money and Has Known Positive Environmental Impacts

1000 ft² of a white roof, replacing a dark roof, offset the emission of 10 tonnes of CO₂

CO2 Equivalency of Cool Roofs

- White Roofs alone offset 24 GT CO2
- Worth > €600 Billion
- To Convert 24 GT CO2 one time into a rate
- Assume 20 Year Period
- Results in 1.2 GT CO2/year
- Average World Car Emits 4 tCO2/year
- So rate is 300 Million Cars Off the Road for 20 years.

Solar Reflective Surfaces Also Cool the Globe

White is 'cool' in Bermuda

and in Santorini, Greece

Cool Roof Technologies

<u>Old</u> <u>New</u>

flat, white

pitched, white

pitched, cool & colored

Simulated Meteorology and Air-quality Impacts in LA

Potential Savings in LA

- Savings for Los Angeles
 - Direct, \$100M/year
 - Indirect, \$70M/year
 - Smog, \$360M/year
- Estimate of national savings: \$5B/year

California is a Summer Peaking Area

California Daily Peak Loads - 2006

California peak electricity demand is growing

- In 2000, 72% population lived along coast.
- By 2040, nearly 40% of population will live inland.
- Need for more peaking plants or demand response measures to meet the higher summer peaks.

Three Necessary Components for Demand Response and Utility Modernization

Advanced Metering Infrastructure

Digital meters with communication

Dynamic Tariffs

- Enable customers to be able to respond to hourly prices
- The structure of these tariffs is critically important as customers are hoping to reduce total energy costs

Automated Response Technology at customer locations

- Enable residential and small commercial customers to respond to price automatically
- Larger customers with energy management systems linked to pricing signals over the internet or through other communication channels
- And, when coupled with energy efficiency programs and policies the result can be reduction
 in total consumption as well as peak period consumption

What a Smarter Grid Means for Customers

- Enhanced utility service reliability
- More stable, higher-quality electricity supply
- Shorter customer outages, faster service restoration
- A "self-healing" grid
- New Customer program and service options
- Increased customer control of energy costs

Critical Peak Pricing (CPP) with additional curtailment option

Potential Annual Customer Savings:

10 afternoons x 4 hours x 1kw = 40 kWh at 70 cents/kWh = ~\$30/year

Key Results from Residential Pilot

- •12% average load reduction for CPP rate alone
- •Up to 40% with rate + enabling tech
- Most participants preferred the pilot rates

Automated Demand Response

Commercial Customers

^{*}Source: Demand Response Research Center, Global Energy Partners

Federal Property Assessed Clean Energy (PACE) Legislation

- American Recovery and Reinvestment Act (ARRA)
 - Included some measures specifically intended to promote PACE programs
- American Clean Energy and Security Act (ACES)
 - Authorized federal government to provide guarantees or other indirect financial support to PACE program bonds, potentially reducing the costs of capital to the program dramatically

H.R.3525

- Introduced by Rep. Mike Thompson in July 2009 (in House Committee on Ways and Means)
- Allows issuance of federally tax-exempt bonds for PACE programs to finance the following:
 - Renewable energy (solar, wind, geothermal, marine and hydrokinetic renewable energy, incremental hydropower, biomass and landfill gas)
 - Energy conservation/efficiency (energy efficient retrofits of existing buildings and/ or efficient storage, distribution, or transmission, including smart grid technologies)
 - Water conservation/efficiency (reduce demand, improve efficiency of use, reduce losses, improve land management practices that conserve water); does not include water storage
 - Zero emission vehicles (no tailpipe emissions, evaporative emissions, or onboard emission-control systems that can deteriorate over time)
 - A facility or project used for the manufacture of the above resources

Federal PACE Legislation (cont.)

H.R.3836

- Introduced by Rep. Steve Israel in October 2009 (in House Committee on Energy and Commerce)
- Purpose is to promote access to affordable financing and provide credit support for accelerated and widespread deployment of:
 - (1) clean energy technologies;
 - (2) advanced or enabling energy infrastructure technologies; and
 - (3) energy efficiency technologies in residential, commercial, and industrial applications, including end-use efficiency in buildings.

Clean energy technology:

Technology related to the production, use, transmission, storage, control, or conservation
of energy that will contribute to a stabilization of atmospheric greenhouse gas
concentrations thorough reduction, avoidance, or sequestration of energy-related
emissions and for which, as determined by the Administrator, insufficient commercial
lending is available at affordable rates to allow for widespread deployment.

– "Credit support" is defined as:

- (A) direct loans, letters of credit, loan guarantees, and insurance products; and
- (B) the purchase or commitment to purchase, or the sale or commitment to sell, debt instruments (including subordinated securities).

States with PACE Legislation

SB 1212 (2009)

AB 255 (2009)

AB 811 (2008), AB 474 (2009) California HB 08-1350 (2008) Colorado Pre-existing authority to form PACE districts Florida Pre-existing authority to form PACE districts Hawaii SB 583 (2009) Illinois SB 224 (2009) Louisiana HB 1567(2009) Maryland SB 358 (2009) Nevada SB 647 (2009) **New Mexico** \$66004a (2009) [same as A40004A] **New York** HB 1 (2009) Ohio SB 668 (2009) Oklahoma HB 2626 (2009) Oregon HB 1937 (2009) Texas Pre-existing authority to form PACE districts Utah H 446 (2009) Vermont

Virginia Wisconsin

The End

For More Information:

http://www.energy.ca.gov/commissioners/rosenfeld_docs/index.html
or just Google "Art Rosenfeld"

